Corrupted Region Restoration based on 2D Tensor Voting
نویسندگان
چکیده
منابع مشابه
Tensor Voting Based Binary Classifier
We propose two novel Tensor Voting (TV) based supervised binary classification algorithms for N-Dimensional (N-D) data points. (a) The first one finds an approximation to a separating hyper-surface that best separates the given two classes in N-D: this is done by finding a set of candidate decision-surface points (using the training data) and then modeling the decision surface by local planes u...
متن کاملMesh Denoising based on Normal Voting Tensor and Binary Optimization
This paper presents a two-stage mesh denoising algorithm. Unlike other traditional averaging approaches, our approach uses an element-based normal voting tensor to compute smooth surfaces. By introducing a binary optimization on the proposed tensor together with a local binary neighborhood concept, our algorithm better retains sharp features and produces smoother umbilical regions than previous...
متن کاملPerceptual Grouping Based on Iterative Multi-scale Tensor Voting
We propose a new approach for perceptual grouping of oriented segments in highly cluttered images based on tensor voting. Segments are represented as second-order tensors and communicate with each other through a voting scheme that incorporates the Gestalt principles of visual perception. An iterative scheme has been devised which removes noise segments in a conservative way using multi-scale a...
متن کاملInvestigations of Tensor Voting Modeling
Tensor voting (TV) is a method for inferring geometric structures from sparse, irregular and possibly noisy input. It was initially proposed by Guy and Medioni [Guy96] and has been applied to several computer vision applications. TV generates a dense output field in a domain by dispersing information associated with sparse input tokens. In 3-D this implies that a surface can be generated from a...
متن کاملTensor Voting: Theory and Applications
We present a unified computational framework which properly implements the smoothness constraint to generate descriptions in terms of surfaces, regions, curves, and labelled junctions, from sparse, noisy, binary data in 2-D or 3-D. Each input site can be a point, a point with an associated tangent direction, a point with an associated normal direction, or any combination of the above. The metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The KIPS Transactions:PartB
سال: 2008
ISSN: 1598-284X
DOI: 10.3745/kipstb.2008.15-b.3.205